List of Symbols

List of Symbols
List of Symbols
Symbol Usage Interpretation Wikipedia ~LaTeX HTML Unicode
~\(\tilde{a}\)Reciprocal of \(a\): \(1/a\) resp. \(a^{-1}\) for \(a \ne 0\) (read as “turn”)Reciprocal\widetilde{}U+007E
\(\acute{}\)\(\acute{a}\)Decrement of \(a\): \(a – 1\) (read as “dec”)Increment\acute{} U+00B4
\(\grave{}\)\(\grave{a}\)Increment of \(a\): \(a + 1\) (read as “inc”)Decrement\grave{} U+0060
^\(\hat{a}\)Double of \(a\): \(2a\) (read as “hat”)Double\widehat{}U+0302
\(\check{}\)\(\check{a}\)Half of \(a\): \(a/2\) (read as “half”)One half\widecheck{}U+02C7
\(\text{-}\)\(a\text{-}\)\(a\) negated: \(a\text{-}\) (read as “neg”)Minus sign\text{-}U+002D
_\(z = a + \underline{b}\)Complex part of \(z\): \(\underline{1}b\) with imaginary unit \(\underline{1}\) (read as “comp”)Imaginary unit\underline{}U+005F
\(\nu\)\({}^{\nu} A\)greatest         finite number: intersection of the complex or real set \(A\) for \({}^{\nu}\mathbb{C} := [-\nu, \; \nu] + i[-\nu, \nu]\)Finite number\nuνU+03BD
\(\omega\)\({}^{\omega} A\)greatest mid-finite number: intersection of the complex or real set \(A\) mit \({}^{\omega}\mathbb{C} := [-\omega, \omega] + i[-\omega, \omega]\)Infinite number\omegaωU+03C9
\(\iota\)\(\iota = \min \mathbb{R}_{>0}\)smallest positive real numberPositive number\iotaιU+03B9
\({}^n\)\({}^n a = a^{(n)}\)\(n\)-th derivative of \(a\) (read as “n of a”)Derivative{}^n
\({}_b\)\({}_b a = \log_b a\)Logarithm to base \(b\) for \(a \in \mathbb{C} \setminus \mathbb{R}_{\le 0}\) (read as “b log a”)Logarithm{}_b
\({}_1\)\({}_1 x = x/||x||\)Unit vector to \(x \ne 0\)Unit vector{}_1
\(\infty\)\(\infty \gg \tilde{\iota}^2\)Replacing \(\pm0\) by \(\pm\widetilde{\infty}\)Infinity\infty∞U+221E
\({}^{\pm}\)\({}^{\pm}A = A \cup \{\pm\infty\}\)Extended complex (real) set \(A \subseteq \mathbb{K}\)Extended real number line \pm ± U+00B1
\(\mathbb M\)\({\mathbb{M}}_{\mathbb{R}} = {}^{\omega}{\mathbb{R}} \setminus {}^{\nu}{\mathbb{R}}\)mid-finite numbers: \({\mathbb{M}}_{\mathbb{C}} := {\mathbb{M}}_{\mathbb{R}} + i{\mathbb{M}}_{\mathbb{R}}\)Infinite set\mathbb{M}𝕄U+1D544
\({}^{\dot{}}\)\(\dot{A}\)point-symmetric set \(A\) Point symmetry\dot˙U+02D9
\({}^{\ll}\)\(A^{\ll}\)Set \(A\) without boundary \(\partial A\) given by min \(\{d(x, y) : x \in A°, y \in A^{\prime}\} = \tilde{\nu}\) Boundary{}^{\ll}≪U+226A
\(‘\)\(A’\)Complement of the set \(A\)Complement\primeU+0027
\(\complement\)\(\complement_1^n\ a_m\)Concatenation of \(a_m\) to \(a_1, …, a_n\)Concatenation operator \complement ∁ U+2201
\(\leftharpoonup\)\(\overset{\leftharpoonup}{a}\)Predecessor of \(a\) (read as “pre”)Predecessor \leftharpoonup U+21BC
\(\rightharpoonup\)\(\overset{\rightharpoonup}{a}\)Successor of \(a\) (read as “post”)Successor \rightharpoonup U+21C0
\(\upharpoonleft\)\(a{\upharpoonleft}_n\)\(n\)-fold repetition of \(a\) in the form \((a, … , a)^T\) (read as “rep”)Repetition\upharpoonleftU+21BF
\(\upharpoonright\)\(a{\upharpoonright}_n\)Projection of \((a_1, … , a_n)^T\) onto the \(k\)-th entry \(a_k\) (read as “proj”) Projection \upharpoonright U+21BE
\(\downarrow\)\(\downarrow x\)Differential of \(x\) (read as “down”)Differential\downarrow↓U+8595
\(\uparrow\)\(\uparrow f(x)\downarrow x\)Integral of \(f(x)\) (read as “up”)Integral\uparrow↑U+8593
\(\Box\)End of proofProof\BoxU+25A1
\(\triangle\)End of definitionDefinition\triangleΔU+2206

© 2024 by Boris Haase

Seitenbeginn