Homepage of Boris Haase

Previous | Next

#71: Completion Number Theory on 06.03.2018

The following section presupposes the results established in the chapters on Set Theory and Nonstandard Analysis. For the moment, we shall consider the behaviour of inconcrete \(m, n \in {}^{\omega }\mathbb{N}\), and we define also \(j, k \in \mathbb{N}\).

Bounding theorem for \(\omega\)-transcendental numbers: Every non-zero complex number whose imaginary or real part has absolute value is \(\le \hat{\omega}\) or \(\ge \omega\) is automatically \(\omega\)-transcendental.

Proof: In a polynomial or series equation, set \({a}_{m} = 1\) and \({a}_{k} = -{\acute{\omega}}\) for \(k < m\), then the claim in the real case follows from the geometric series formula after taking the reciprocal. We can find the exact limit value by replacing \(\omega\) by \({\omega}(m) = \omega - \acute{\omega}/{\omega(m)}^{m}\). The complex cases are solved by setting \(x = (1 + ib)\omega\) for \(b \in {}^{\omega }{\mathbb{R}}\).\(\square\)

Coefficient theorem for \(\omega\)-transcendental numbers: Every normalised irreducible polynomial and series such that that \(|{a}_{k}| \ge \omega\) for at least one \({a}_{k}\) only has \(\omega\)-transcendental zeros.

Proof: The zeros of normalised irreducible polynomials and series are pairwise distinct and uniquely determined. Since they are not \(\omega\)-algebraic, they must be \(\omega\)-transcendental.\(\square\)

Approximation theorem for \(\omega\)-algebraic numbers: Every real \(\omega\)-algebraic number of degree \(k > 1\) may be approximated by a real \(\omega\)-algebraic number of degree \(j < k\) with an average asymptotic error of \(\iota \zeta(j + 1)/(\ln j \; {|{}^{\omega }\mathbb{Z}|}^{j})\).

Proof: On the conventionally real axis, the number of \(\omega\)-algebraic numbers approximately evenly distributed between fixed limits increases by a factor of approximately \(|{}^{\omega }\mathbb{Z}|\) per degree. The error corresponds to the distance between \(\omega\)-algebraic numbers. The non-real \(\omega\)-algebraic numbers are less dense.\(\square\)

Conclusion: Two distinct real \(\omega\)-algebraic numbers have an average distance of at \(\pi/(\ln \omega \; {|{}^{\omega }\mathbb{Z}|}^{\acute{\omega}})\). Determining this minimum distance exactly requires an infinite non-linear non-convex optimisation problem to be solved. Therefore, the \(c\)-algebraic numbers have an approximate order of \(\mathcal{O}(c)\), disproving Roth's theorem, which essentially amounts to proving the (trivial) minimum distance between two rational numbers, and thus disproves the abc conjecture, but not Liouville's result.

Theorem: The maximum distance between two neighbouring real \(\omega\)-algebraic numbers is \(\Omega/\acute{\omega}\) for the \(\omega\)-transcendental omega constant \(\Omega = e^{-\Omega} = W(1)\) (see below Lambert-W function).

Proof: The distance between two real \(\omega\)-algebraic numbers is largest around the points \(\pm 1\). The number 1 may be approximated by an real \(\omega\)-algebraic x that satisfies the polynomial or series equation \(\acute{x}x^{m-1}\acute{\omega} = 1\) for \(x > 1\) or \(x^m = -\acute{x}\acute{\omega}\) for \(x < 1.\square\)

Theorem: For every number \(z \in \mathbb{Q}+i\mathbb{Q}\) that is neither 0 nor root of unity, the geometric series \(\sum\limits_{k=0}^{\acute{\omega}}{{{z}^{k}}}=\widehat{1-z}(1-{{z}^{\omega}})\) is already \(\omega\)-transcendental.

Proof: The modulus of either the numerator or denominator \({z}^{\omega}\) is \(\ge {2}^{\acute{\omega}/2}.\square \)

Theorem: Euler's number \(e\) is \(\omega\)-transcendental.

Proof: If we accept the exponential series as a representation of \(e\), it follows that \(e = (k{\acute{\omega}} + 1)/{\acute{\omega}}!\) for \(k \ge \omega\). Therefore, the numerator and the denominator of this fraction must be \(\ge \omega\), since neither \({\acute{\omega}}\) nor a prime divisor of \(k\) in the numerator simplifies with \({\acute{\omega}}!\). However, if we accept the representation \({(1 + 1/{\acute{\omega}})}^{\acute{\omega}}\) for \(e\), the claim is trivial. Note that these two representations give different numbers.\(\square\)

The greatest-prime criterion for \(\omega\)-transcendental numbers: If a real number \(r\) may be represented as an irreducible fraction \(a/(bp) \pm s/t\), where \(a, b, s\), and \(t\) are natural numbers, \(abst \ne 0\), \(b + t > 2\), and the (second-)greatest prime number \(p \in {}^{\omega }\mathbb{P}, p \nmid a\) and \(p \nmid t\), then \(r\) is \(\omega\)-transcendental.

Proof: We have that \(r = (at \pm bps)/(bpt)\) with denominator \(\ge 2p \ge 2\omega - \mathcal{O}(\ln \, \omega) > \omega\) by the prime number theorem.\(\square \)

Theorem: Pi \(\pi\) is \(\omega\)-transcendental.

Proof: This follows from its Wallis product representation, or its product representation using the gamma function with value \(-\hat{2}\), provided that we accept these representations. It should be noted that these two representations yield distinct numbers. Alternatively, we can apply the greatest-prime criterion to the Leibniz series, or the Taylor series of arcsin\((x)\) at \(x = 1\).\(\square\)

Theorem: The constants of \(({C}_{Artin})\), Baxter \(({C}_{2})\), Chaitin \(({\Omega}_{F})\), Champernowne \(({C}_{10})\), Copeland-Erdős \(({C}_{CE})\), Erdős-Borwein \((E)\), Feller-Tornier \(({C}_{FT})\), Flajolet and Richmond \((Q)\), Glaisher-Kinkelin \((A)\), Heath-Brown-Moroz \(({C}_{HBM})\), Landau-Ramanujan \((K)\), Liouville \(({£}_{Li})\), Murata \(({C}_{M})\), Pell \(({P}_{Pell})\), Prouhet-Thue-Morse \((\tau)\), Sarnak \(({C}_{sa})\) and Stephen \(({C}_{S})\) as well as the Euler resp. Landau totient constant \((ET\) resp. \(LT)\), the twin prime constant \(({C}_{2})\) and the carefree constants \(({K}_{1}, {K}_{2}\) and \({K}_{3})\) are \(\omega\)-transcendental, since an existing (large) power of a small or very large prime cannot be removed from numerator or denominator by simplifying.\(\square\)

Remark: The claim for \({C}_{CE}\) clearly also holds for every base from \({}^{c}\mathbb{N}^{*}\).

Theorem: The constants of Catalan \((G)\), Gieseking \((\pi \, \ln \, \beta)\), Smarandache \(({S}_{1})\) and Taniguchi \(({C}_{T})\) are \(\omega\)-transcendental because of the greatest-prime criterion.\(\square\)

Theorem: The trigonometric and hyperbolic functions and their inverse functions, the digamma function \(\psi\), the Lambert-\(W\)-function, the \(Ein\) function, the (hyperbolic) sine integral \(S(h)i\), the Euler's Beta function \(B\), and, for positive natural numbers \(s\) and \(u\) and natural numbers \(t\), the generalised error function \({E}_{t}\), the hypergeometric function \({}_{0}{F}_{t}\), the Fresnel integrals \(C\) and \(S\) and the Bessel function \({I}_{t}\) and the Bessel function of the first kind \({J}_{t}\), the Legendre function \({\chi}_{t}\), the polygamma function \({\psi}_{t}\), the generalised Mittag-Leffler function \({E}_{s,t}\), the Dirichlet series \(\sum\limits_{k=1}^{\acute{\omega}}{{\hat{k}^{s}f(k)}\;}\) with maximally finite rational \(|f(k)|\), the prime zeta function \(P(s)\), the polylogarithm \({Li}_{s}\) and the Lerch zeta-function \(\Phi(q, s, r)\) always yield \(\omega\)-transcendental values for rational arguments and maximal finite rational \(|q|\) and \(|r|\) at points where their Taylor series converge.

Proof: The claim follows from the greatest-prime criterion, the Dirichlet prime number theorem, and the Wallis product. For the digamma function, the claim follows from the proof of \(\omega\)-transcendence of Euler's constant below.\(\square\)

Theorem: The gamma function \(\Gamma(z) := m! \, {m}^{z}/(z(z + 1) ... (z + m))\), where \(m = {\omega}^{{\omega}^{2}}\) and \(z \in {}^{\omega }\mathbb{C} \setminus -{}^{\omega }\mathbb{N}\), is \(\omega\)-transcendental for \(z \in {}^{\omega }\mathbb{Q}\) and for suitable supersets of \({}^{\omega }\mathbb{N}\) resp. \({}^{\omega }\mathbb{Q}\).

Proof: The values of \(\Gamma(z)\) are the zeros of minimal polynomials or series with infinite integer coefficients.\(\square\)

Theorem: For \(x \in {}^{\omega }{\mathbb{R}}\), let be \(s(x) := \sum\limits_{k=1}^{}{\hat{k}{{x}^{k}}}\) and \(\gamma := s(1) - \ln \, \acute{\omega} = \int\limits_{1}^{\acute{\omega}}{\widehat{x\left\lfloor x \right\rfloor }\left( x-\left\lfloor x \right\rfloor \right)dx} \in \; ]0, 1[\) (can be seen by rearranging) Euler's constant. If we accept \(s(2^{-1})\ell \, (- s(2^{-\ell}))\) as a representation of ln \(\acute{\omega}, \gamma\) is therefore with a precision \(\mathcal{O}({2}^{-\omega}\hat{\omega}\ell)\) \(\omega\)-transcendental.

Proof: We obtain \(-\ln(-\acute{x}) = s(x) + \mathcal{O}(\hat{\omega}{x}^{\omega}/\acute{x}) + t(x)dx\) for \(x \in [-1, 1 - \hat{c}]\) and a real function \(t(x)\) such that \(|t(x)| < {\omega}\) by (exact) integration (see Nonstandard Analysis) of the geometric series. After applying Fermat's little theorem and the greatest-prime criterion to the denominator of the \(k\)-th summand of \(s\), the product of the largest and second-largest prime in \({}^{\omega }\mathbb{N}\) is greater than \(\ell\omega\) by the prime number theorem.\(\square\)

Remark: For arbitrary \(\omega \in {}^{\omega }\mathbb{N}\), the preceding proof is barely more difficult.

Definition: When two numbers \(x, y \in {}^{\omega }\mathbb{C}^{*}\) or their reciprocals do not satisfy any polynomial or series equation \(p(x, y) = 0\), so they are called \(\omega\)-algebraically independent.

Theorem: The greatest-prime criterion, with \(e = {(1 + \hat{p})}^{p}\) for maximal \(p \in {}^{\omega }\mathbb{P}\) and \(\pi\) as Wallis product, yields pairwise \(\omega\)-algebraically independent representations of \(A, {C}_{2}, \gamma, e, K\) and \(\pi.\square\)

Theorem: The BBP series\(\sum\limits_{k=1}^{}{p(k)\widehat{q(k){{b}^{k}}}}\) for \(b \in {}^{\omega }\mathbb{N}_{\ge 2}\) and integer polynomials resp. series \(p\) and \(q \in {}^{\omega }\mathbb{Z}\) with \(q(k) \ne 0\) and \(\deg(p) < \deg(q)\) only yield \(\omega\)-transcendental values.

Proof: We can reduce the sum to a smallest common denominator \(d \ge {b}^{m} > \omega\) with \(d, m \in \mathbb{N}^{*}.\square\)

Definition: A rational number \(\ne 0\) is said to be power-free if it cannot be represented as the power of a rational number with integer exponent \(\ne \pm 1\). Let \(||\cdot|{{|}_{d}}\) be the distance to the nearest integer.

Theorem: For any power-free \(q \in Q := {\mathbb{Q}}_{>0}\), we have that \({q}^{x} \in Q\) for real \(x\) if and only if \(x \in {}^{\omega }\mathbb{Z}\) and \(|x|\) is not excessively large.

Proof: Let wlog \(x > 0\). Since there is no contradiction for \(x \in {}^{\omega }\mathbb{N}\), assume \(x \in Q \setminus {}^{\omega }{\mathbb{N}}^{*}\). Since this implies \({q}^{x} \in {}^{\omega }{\mathbb{A}}_{R} \setminus Q\), assume \(x := m/n \in {}^{\omega }\mathbb{R}_{>0} \setminus Q\) for \(m, n \in {\mathbb{N}}^{*}\) and gcd\((m, n) = 1\). This implies \({q}^{m} = {r}^{n}\) for an \(r \in Q\). The fundamental theorem of arithmetic yields a numerator or denominator of \(q\) or \(r\) greater than \(2^{\acute{\omega}}\). This contradiction results in the claim.\(\square\)

Remark: This theorem proves the Alaoglu and Erdős conjecture, which states that \({p}^{x}\) and \({q}^{x}\) are \(c\)-rational for distinct \(p, q \in {}^{c}\mathbb{P}\) if and only if \(x \in {}^{c}\mathbb{Z}\) and \(|x|\) is not excessively large.

Remark: These arguments can be extended to finite transcendental numbers by replacing \({}^{c}\mathbb{N}\) with \({}^{\omega }\mathbb{N}\) and making the required adjustments. Inconcrete transcendence implies finite transcendence.

Littlewood theorem in conventional mathematics: We have for all \(a,b\in {}^{c}\mathbb{R}\) and \(n\in {}^{c}\mathbb{N}^{*}\):\[\underset{n\to \infty }{\mathop{\lim \inf }}\,n\;||na|{{|}_{d}}\;||nb|{{|}_{d}}=0.\]Proof: Let be \(r,s\in {}^{c}\mathbb{N}^{*}\) the denominators of the continued fraction of \(a\) resp. \(b\) with precision \(q\in {}^{c}\mathbb{R}_{> 0}\) and \(n\) again and again a natural multiple of \(rs\). Then we have according to Dirichlet's approximation theorem (see [455], p. 63): \[\underset{n\to \infty }{\mathop{\lim \inf }}\,n||na|{{|}_{d}}||nb|{{|}_{d}}=\underset{n\to \infty }{\mathop{\lim \inf }}\,n\mathcal{O}{{(\hat{n})}^{2}}=\underset{n\to \infty }{\mathop{\lim \inf }}\,\mathcal{O}(\hat{n})=0.\square\]Refutation of the Littlewood conjecture in nonstandard mathematics: Let \(a = b := {{\omega}^{-{3}/{2}}}\). Then we have: \[\omega \;||\omega a|{{|}_{d}}\;||\omega b|{{|}_{d}}= 1 \ne 0.\square\]The generalised Riemann hypothesis holds as

Theorem: For minimal \(\varepsilon \in \left[ \hat{2},1 \right],\sigma \left( 0 \right):=\chi \left( 0 \right)=0,\sigma \left( n \right):=\rho \left( n \right)+\sigma \left( \acute{n} \right), \rho \left( n \right)=\pm \chi \left( n \right), {|\sigma\left( n \right)| = \mathcal{O}\left( {{n}^{\varepsilon }} \right)}\), an arbitrary Dirichlet character \(\chi \left( n \right)\) with \(n\in {}^{\acute{\omega}}\mathbb{N}^{*}\), the Dirichlet \(L\)-function \(L\left( s,\chi \right)\) with \(s\in {}^{\omega }\mathbb{C}\) and \[\frac{L\left( 2s,{{\chi }^{2}} \right)}{L\left( s,\chi \right)} = \frac{\prod\limits_{p\in {}^{\acute{\omega}}\mathbb{P}}{{{\left( 1-{{\chi }^{2}}(p){{p}^{-2s}} \right)}^{-1}}}}{\prod\limits_{p\in {}^{\acute{\omega}}\mathbb{P}}{{{\left( 1-\chi (p){{p}^{-s}} \right)}^{-1}}}}=\prod\limits_{p\in {}^{\acute{\omega}}\mathbb{P}}{{{\left( 1+\chi (p){{p}^{-s}} \right)}^{-1}}}=\prod\limits_{p\in {}^{\acute{\omega}}\mathbb{P}}{\sum\limits_{k\in {}^{\acute{\omega}}\mathbb{N}}{{{\left( -\chi (p){{p}^{-s}} \right)}^{k}}}}=\sum\limits_{n \in {}^{\acute{\omega}}\mathbb{N}^{*}}{\rho (n){{n}^{-s}}} =\sum\limits_{n \in {}^{\acute{\omega}}\mathbb{N}^{*}}{\left( \sigma (n)-\sigma (\acute{n}) \right){{n}^{-s}}}=\frac{\sigma (\acute{\omega})}{{{\acute{\omega}}^{s}}}+\sum\limits_{n\in {}^{\acute{\omega}}{{\mathbb{N}}_{\ge 2}}}{\sigma (\acute{n})\left( {{\acute{n}}^{-s}}-{{n}^{-s}} \right)}=\frac{\sigma (\acute{\omega})}{{{\acute{\omega}}^{s}}}+s\int\limits_{x\in [1, \acute{\omega}[}{\frac{\sigma (\lfloor x \rfloor )}{{{x}^{s+1}}}dx}\]\(\varepsilon = \hat{2}\) holds (see [887], p. 56 f.).

Indirect proof: Assume \(\varepsilon \in \left] \hat{2},1 \right]\). If \(s := \hat{2} + it\) with \(t\in {}^{c}\mathbb{R}\) is a non-trivial zero of \(L\left( s,\chi \right)\), then also every \(\delta + it\) is one with \(\delta \in \left] \hat{2},\varepsilon \right]\). This contradicts the actual course of the function \(L\left( s,\chi \right).\square\)

Remark: The Riemann hypothesis follows from \(\chi \left( n \right) = 1\) for all \(n\in {}^{\omega}\mathbb{N}^{*}\). Also \({{\chi }^{2}}\left( n \right)\) is Dirichlet character. Note the functional equation for \(\varepsilon \in \left[ 0,\hat{2} \right]\) (see [887], p. 108).

Corollary: Any number \(z \in {}^{\omega}\mathbb{Z} \setminus \{-1\}\), which is no perfect square, is a primitive root modulo infinitely many primes \(p \in \mathbb{P}\) by (Hooley, Christopher: On Artin's Conjecture. J. Reine Angew. Math. 225; 1967; 209 - 220).\(\square\)

Corollary: All numeri idonei are exactly the 65 values 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133, 165, 168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408, 462, 520, 760, 840, 1320, 1365, and 1848 by (Kani, Ernst: Idoneal Numbers and some Generalizations; Ann. Sci. Math. 35 (2); 2011; 197 - 227).\(\square\)

Corollary: All odd \(n \in {}^{\omega }\mathbb{N}\) with \(n \ne {x}^{2} + {y}^{2} + 10{z}^{2}\) for \(x, y, z \in {}^{\omega }\mathbb{Z}\) are exactly the 18 values 3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 253, 307, 391, 679, and 2719 by (Ono, Ken; Soundararajan, Kannan: Ramanujan's Ternary Quadratic Form; Inventiones Mathematicae 130 (3); 1997; 415 - 454).\(\square\)

Corollary: Any number field with class number 1 is either Euclidean or an imaginary quadratic number field of discriminant -19, -43, -67, or -163 by (Weinberger, Peter J.: On Euclidean Rings of Algebraic Integers. Analytic number theory (Proc. Sympos. Pure Math. 24; St. Louis Univ.; St. Louis, Mo.; 1972); 1973; 321 - 332).\(\square\)

Corollary: The Miller-Rabin primality test is polynomial by (Miller, Gary L.: Riemann's Hypothesis and Tests for Primality; Journal of Computer and System Sciences 13 (3); 1976; 300 - 317).\(\square\)

Corollary: There is by (Dudek, Adrian W.: On the Riemann Hypothesis and the Difference Between Primes; International Journal of Number Theory 11 (03); 2014; 771 - 778) for all \(x \in {}^{\omega }\mathbb{R}_{\ge 2}\) a \(p \in {}^{\omega }\mathbb{P}\) satisfying\[x-4\hat{\pi }\sqrt{x} \, \text{ln }x < p \le x.\square\]Corollary: For all \(n \in {}^{\omega }\mathbb{N}_{\ge 5041}\), we have by (Robin, Guy: Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann; Journal de Mathématiques Pures et Appliquées 63 (2), Neuvième Série; 1984; 187 - 213) that \[\sum\limits_{d|n}{d}<{{e}^{\gamma }}\ln \ln n.\square\]Corollary: For all \(x \in {}^{\omega }\mathbb{R}_{\ge 73.2}\), \(p \in {}^{\omega }\mathbb{P}\) and \(k \in {}^{\omega }\mathbb{N}^{*}\), we have by (Schoenfeld, Lowell: Sharper Bounds for the Chebyshev Functions \(\theta(x)\) and \(\psi(x)\). II; Mathematics of Computation 30 (134); 1976; 337 - 360) that \[\left| x-\sum\limits_{{{p}^{k}}\le x}{\ln \,p} \right|<\frac{\sqrt{x}\,{{\ln }^{2}}x}{8\pi }.\square\]Prime number theorem: For all \(x\in {}^{\omega }{{\mathbb{R}}_{\ge 2657}}\), we find in the same source as before that\[\left| \left| {{\mathbb{P}}_{\le x}} \right|-\int\limits_{d0}^{1-d0}{\frac{dt}{\ln t}-\int\limits_{1+d0}^{x}{\frac{dt}{\ln t}}} \right|< \frac{\sqrt{x}\ln x}{8\pi }.\square\]Ternary Goldbach theorem: Every odd \(n\in {}^{\omega }{{\mathbb{N}}_{\ge 7}}\) can be written according to (Jean-Marc Deshouillers et al.: Electronic Research Announcements of the AMS Vol. 3 (1997), 99 - 104) as the sum of three primes.\(\square\)

© 06.03.2018 by Boris Haase

Valid XHTML 1.0 • disclaimer • mail@boris-haase.de • pdf-version • bibliography • subjects • definitions • statistics • php-code • rss-feed • top