Euclidean Geometry • Equitable Distributing • Linear Programming • Set Theory • Nonstandard Analysis • Representations • Topology • Transcendental Numbers • Number Theory • Calculation of Times (Previous | Next)

The following results in the field infinity, set theory, linear programming, transcendental numbers and nonstandard analysis have to be called sensational! Because of the finiteness of our world, there are certain difficulties to treat the infinite. One difficulty is the question whether the number of elements of the set of algebraic numbers should be defined finite or infinite.

The finite definition offers significant advantages of handling and is traditional. It is shown that the set of natural, integer, rational, algebraic, real or complex numbers is not closed. Hence, the difference of algebraic numbers is no longer necessarily algebraic, what complicates the theory of transcendental numbers. An infinite rational and transcendental number can also consist of a finite continued fraction.

Here the last partial denominator can be infinitely big. If we would identify it with a conventionally rational number by setting the last partial fraction equal to zero, it would simultaneously solve a linear equation with (infinite) integer coefficients. This identification leads to contradictions, if the first equation is subtracted several times from the second one and the solution of every newly emerged equation is determined.

It is correct to work with approximate fractions. We can show that, by (conventionally natural and infinite natural) induction that, starting with the set of conventionally natural numbers, it can be diagonalised up to any power according to Cantor, so that all(!) infinite sets are equipotent to the set of conventionally natural numbers, if we use Hilbert's translations as an aid.

This contradictoriness is met with the proposition that there is for no set a bijection to its proper subset. Hence, Dedekind-infinity and Hilbert's hotel are destroyed, since the image sets of translations of every set lead out of the latter. We can specify every number of elements of a set by reference to the set of conventionally natural numbers. We obtain this only by precisely prescribing the exact construction.

It is something complete different whether we consider all multiples of five and thereby construct the associated set in such a way that each conventionally natural number is multiplied by five, or whether we delete all numbers, up to each fifth, from the set of the conventionally natural numbers. Cantor regarded such sets as of the same cardinal number. If we, however, consider bijections correctly, results another picture.

Cantor's distinction between merely countable and uncountable sets is too undifferentiated. The correct treatment of bijections yields the statement that, concerning the number, there are infinite many sets between the set of conventionally natural numbers and the one of conventionally real numbers. Thus, the continuum hypothesis gets a new answer. Furthermore, the asymptotic function of the number of algebraic numbers is determined.

Since individual n-ness belongs to every natural number n that cannot be derived from its predecessors or successors, there is no complete system of axioms in mathematics, because with each new number something irreducible new emerges. By confining, however, to selected aspects, we can specify a finite system of axioms for a finite number of entities. Each level of infinity refuses completeness all the more.

Mathematics is not value-free. Theories are based on presuppositions. In mathematics, they are often expressed by axioms (prove to be true or false resp. to justify). Thus, all theories are incomplete and, as the case may be, beyond that, contradictory. Instead of explicit axioms, (implicit) definitions are more suitable in that the existence of the specified is tacitly presupposed, until refutation.

The euclidean geometry gives four definitions that challenge several axioms, using results of set theory. The question of a fair distribution of persons deals less about the theoretical content than about practical application. Here a spread-sheet analysis is used. The set theory defines some new sets and states generally their number, especially for the algebraic numbers

With the linear programming, a new perturbation method of the simplex method is presented as well as this is itself in the worst case no longer strongly polynomial. More than that, the maximally quadratic and moreover strongly polynomial normal method as solution of the 9th Smale problem is presented. Finally, the diameter theorem for polytopes depending on dimensions and number of restrictions is proved.

In the nonstandard analysis, integration, differentiation, continuity, convergence and limit value for finite and infinite (conventionally not measurable) sets are redefined and examples are given, as well as for discontinuous functions, to obtain better, more precise, more elegant or simply correct mathematical statements (also for known propositions of analysis).

Below representations, simplification and exactitude of expressions are weighed against each other and the resulting desirable proceeding, deriving from this, is ethically outlined. In the topology, the terms of openness and closure of sets are destructed as well as the real and complex numbers are stated as only Kolmogorov spaces resp. their Hausdorff property is denied.

Below transcendental numbers, necessary and sufficient criteria for transcendence are stated and some new examples are stated like Euler's constant. The transcendence of a number can be furthermore characterised via the product and sum proposition. The greatest-prime criterion is also efficient. Finally, the approximation of algebraic numbers and their distances are treated.

In the calculation of times, it is shown how the octal system can be used practically worldwide and what the advantages are here. Besides introducing a new calendar and a new calculation of clock time, the octal system is applied also to the SI-units metre (m) and second (s). It is reasoned with practical examples why the octal system can completely replace the decimal system advantageously.

© 2002-2017 by Boris Haase

• disclaimer • mail@boris-haase.de • pdf-version • bibliography • subjects • definitions • statistics • php-code • rss-feed • top